## 15 Elementary Properties of Eigensystems

Eigenvalues and Eigenvectors For an $n \times n$ matrix $A$, scalars $\lambda$ and vectors $x \neq 0\left(x \in \mathbb{R}^{n}\right)$ satisfying $A \boldsymbol{x}=\lambda \boldsymbol{x}$ are called eigenvalues and eigenvectors of $A$, respectively, and any such pair, $(\lambda, \boldsymbol{x})$, is called an eigenpair for $A$. The set of distinct eigenvalues, denoted by $\sigma(A)$, is called the spectrum of $A$.

- $\lambda \in \sigma(A) \Longleftrightarrow A-\lambda I$ is singular $\Longleftrightarrow$
$\Longleftrightarrow \operatorname{det}(A-\lambda I)=0$.
- $\{x \neq 0 \mid x \in \operatorname{ker}(A-\lambda I)\}$ is the set of all eigenvectors associated with $\lambda$. From now on, $E(\lambda, A):=\operatorname{ker}(A-\lambda I)$ is called an eigenspace for $A$.


## Characteristic Polynomial and Equation

- The characteristic polynomial of $A \in$ $\operatorname{Mat}_{n \times n}(\mathbb{R})$ is $p(\lambda)=\operatorname{det}(A-\lambda I)$. The degree of $p(\lambda)$ is $n$, and the leading term in $p(\lambda)$ is $(-1)^{n} \lambda^{n}$.
- The characteristic equation for $A$ is $p(\lambda)=0$.
- The eigenvalues of $A$ are the solutions of the characteristic equation or, equivalently, the roots of the characteristic polynomial.
- Altogether, $A$ has $n$ eigenvalues, but some may be complex numbers (even if the entries of $A$ are real numbers), and some eigenvalues may be repeated.
- If $A$ contains only real numbers, then its complex eigenvalues must occur in conjugate pairs - i.e., if $\lambda \in \sigma(A)$, then $\bar{\lambda} \in \sigma(A)$.

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote a given operator defined by

$$
f\binom{x}{y}=\binom{3 x+3 y}{x+5 y}
$$

Find eigenvectors and eigenvalues of $f$.
2. Let (a) $A=\left(\begin{array}{ll}3 & 3 \\ 1 & 5\end{array}\right)$;
(b) $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$.

Find characteristic polynomial of $A$, and corresponding eigenspaces.
3. It is given a matrix $A=\left(\begin{array}{lll}7 & -4 & 0 \\ a & -7 & b \\ 3 & -2 & 0\end{array}\right)$ which eigenvalues are -1 and 1 . Find a parameters $a, b \in \mathbb{R}$ and find algebraic and geometrical multiplicities of all eigenvalues of $A$.
4. Find eigenvalues, eigenspaces and algebraic and geometrical multiplicities of all eigenvalues of $A$, if matrix $A$ is given by

$$
A=\left[\begin{array}{cccc}
3 & -4 & 0 & 2 \\
4 & -5 & -2 & 4 \\
0 & 0 & 3 & -2 \\
0 & 0 & 2 & -1
\end{array}\right]
$$

Multiplicities For $\lambda \in \sigma(A)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right\}$, we adopt the following definitions.

- The algebraic multiplicity of $\lambda$ is the number of times it is repeated as a root of the characteristic polynomial. In other words, $\operatorname{alg} \operatorname{mult}_{A}\left(\lambda_{i}\right)=a_{i}$ if and only if $\left(x-\lambda_{1}\right)^{a_{1}} \ldots\left(x-\lambda_{s}\right)^{a_{s}}=0$ is the characteristic equation for $A$.
- When alg mult ${ }_{A}(\lambda)=1, \lambda$ is called a simple eigenvalue.
- The geometric multiplicity of $\lambda$ is dimker $(A-\lambda I)$. In other words, geo mult ${ }_{A}(\lambda)$ is the maximal number of linearly independent eigenvectors associated with $\lambda$.
- Eigenvalues such that $\operatorname{alg}_{\operatorname{mult}_{A}}(\lambda)=$ geo mult $A_{A}(\lambda)$ are called semisimple eigenvalues of $A$.

5. Let

$$
A=\left(\begin{array}{cccc}
1 & a & 1 & 0 \\
1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & b & 0 & 1
\end{array}\right)
$$

be a given matrix. Find parameters $a$ and $b$ if it is known that $A$ is singular matrix which all eigenvalues have algebraic multiplicity 2 .
6. Let $a$ denote some real number. Find all eigenvalues and corresponding eigenspaces for a given matrix of $n$-th order

$$
\left[\begin{array}{cccccc}
1+a & 1 & 1 & \ldots & 1 & 1 \\
1 & 1+a & 1 & \ldots & 1 & 1 \\
1 & 1 & 1+a & \ldots & 1 & 1 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & 1 & 1 & \ldots & 1+a & 1 \\
1 & 1 & 1 & \ldots & 1 & 1+a
\end{array}\right] .
$$

7. Diagonalize given matrices
(a) $A=\left(\begin{array}{ll}3 & 3 \\ 2 & 5\end{array}\right)$;
(b) $A=\left(\begin{array}{cc}1 & -5 \\ 1 & -1\end{array}\right)$;
(i.e. find invertible matrix $P$, with entries from $\mathbb{R}$, for which $P^{-1} A P=D$ hold, where $D$ is diagonal matrix with entries from $\mathbb{R}$ ).
8. Find a real number $\lambda$ such that $A=\left(\begin{array}{cc}i & 1 \\ 2 i & \lambda\end{array}\right)$ has eigenvector $\left[\begin{array}{l}i \\ 1\end{array}\right]$. Is it possible to diagonalize $A$ ?

## 16 Generalized Eigenvectors and Nilpotnent Operators

Generalized Eigenvector $\quad$ Suppose $T \in \mathcal{L}(\mathcal{V})$ $\overline{\text { and } \lambda \text { is an eigenvalue of } T \text {. A vector } \boldsymbol{v} \in \mathcal{V} \text { is called }}$ a generalized eigenvector of $T$ corresponding to $\lambda$ if $\boldsymbol{v} \neq 0$ and

$$
(T-\lambda I)^{j}=0
$$

for some positive integer $j$.
Generalized Eigenspace, $G(\lambda, T)$ Suppose $T \in$ $\overline{\mathcal{L}}(\mathcal{V})$ and $\lambda \in \mathbb{F}$. The generalized eigenspace of $T$ corresponding to $\lambda$, denoted $G(\lambda, T)$, is defined to be the set of all generalized eigenvectors of $T$ corresponding to $\lambda$, along with the 0 vector.
Description of generalized eigenspaces Suppose $T \in \mathcal{L}(\mathcal{V})$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T)=$ $\operatorname{ker}(T-\lambda I)^{\operatorname{dim} \mathcal{V}}$.

## Linearly independent generalized

eigenvectors Let $T \in \mathcal{L}(\mathcal{V})$. Suppose $\lambda_{1}$, $\overline{\lambda_{2}}, \ldots, \lambda_{m}$ are distinct eigenvalues of $T$ and $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$, $\ldots, \boldsymbol{v}_{m}$ are corresponding generalized eigenvectors. Then $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right\}$ is linearly independent set.

1. Define $T \in \mathcal{L}\left(\mathbb{C}^{3}\right)$

$$
T\left(z_{1}, z_{2}, z_{3}\right)=\left(4 z_{2}, 0,5 z_{3}\right)
$$

(a) Find all eigenvalues of $T$, the corresponding eigenspaces, and the corresponding generalized eigenspaces.
(b) Show that $\mathbb{C}^{3}$ is the direct sum of generalized eigenspaces corresponding to the distinct eigenvalues of $T$.
2. Define $T \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ by

$$
T(w, z)=(z, 0)
$$

Find all generalized eigenvectors of $T$.
3. Define $T \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ by

$$
T(w, z)=(-z, w)
$$

Find the generalized eigenspaces corresponding to the distinct eigenvalues of $T$.

Nilpotent An operator is called nilpotent if some power of it equals 0 .
Nilpotent operator raised to dimension of domain is 0 Suppose $N \in \mathcal{L}(\mathcal{V})$ is nilpotent. Then $N^{\operatorname{dim} \mathcal{V}}=0$.

Matrix of a nilpotent operator Suppose $N$ is
a nilpotent operator on $\mathcal{V}$. Then there is a basis of $\mathcal{V}$ with respect to which the matrix of $N$ has the form

$$
\left(\begin{array}{cccccc}
0 & * & * & \ldots & * & * \\
0 & 0 & * & \ldots & * & * \\
0 & 0 & 0 & \ldots & * & * \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & * \\
0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

here all entries on and below the diagonal are 0's.
4. Operator $T \in \mathcal{L}\left(\mathbb{R}^{4}\right)$ is defined on the following way

$$
T\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{3}, z_{4}, 0,0\right)
$$

(a) Check is $T$ nilpotent operator.
(b) Find a basis $\mathcal{B}$ of space $\mathbb{R}^{4}$ such that

$$
[T]_{\mathcal{B}}=\left(\begin{array}{cccc}
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(all entries on and below the diagonal are 0's).
5. Explain why the operator of differentiation on $\mathcal{P}_{m}(\mathbb{R})$ is nilpotent.
6. Suppose $T \in \mathcal{L}(\mathcal{V})$ is invertible. Prove that $G(\lambda, T)=G\left(\frac{1}{\lambda}, T^{-1}\right)$ for every $\lambda \in \mathbb{F}$ with $\lambda \neq 0$.
7. Suppose $T \in \mathcal{L}(\mathcal{V})$ and $\alpha, \beta \in \mathbb{F}$ with $\alpha \neq \beta$. Prove that

$$
G(\alpha, T) \cap G(\beta, T)=\{\mathbf{0}\}
$$

8. Suppose $T \in \mathcal{L}(\mathcal{V}), m$ is a positive integer, and $\boldsymbol{v} \in \mathcal{V}$ is such that $T^{m-1} \boldsymbol{v} \neq 0$ but $T^{m} \boldsymbol{v}=0$. Prove that

$$
\boldsymbol{v}, T \boldsymbol{v}, T^{2} \boldsymbol{v}, \ldots, T^{m-1} \boldsymbol{v}
$$

is linearly independent.
9. Suppose $N \in \mathcal{L}(\mathcal{V})$ is nilpotent. Prove that 0 is the only eigenvalue of $N$.
10. Prove or give a counterexample: The set of nilpotent operators on $\mathcal{V}$ is a subspace of $\mathcal{L}(\mathcal{V})$.

