15 Elementary Properties of Eigensystems

Eigenvalues and Eigenvectors For an $n \times n$ matrix A, scalars λ and vectors $x \neq 0$ ($x \in \mathbb{R}^n$) satisfying $Ax = \lambda x$ are called **eigenvalues** and **eigenvectors** of A, respectively, and any such pair, (λ, x) , is called an **eigenpair** for A. The set of distinct eigenvalues, denoted by $\sigma(A)$, is called the **spectrum** of A.

- $\lambda \in \sigma(A) \iff A \lambda I$ is singular \iff $\iff \det(A - \lambda I) = 0.$
- $\{x \neq 0 \mid x \in \ker(A \lambda I)\}$ is the set of all eigenvectors associated with λ . From now on, $E(\lambda, A) := \ker(A \lambda I)$ is called an *eigenspace* for A.

Characteristic Polynomial and Equation

- The characteristic polynomial of $A \in Mat_{n \times n}(\mathbb{R})$ is $p(\lambda) = det(A \lambda I)$. The degree of $p(\lambda)$ is n, and the leading term in $p(\lambda)$ is $(-1)^n \lambda^n$.
- The *characteristic equation* for A is $p(\lambda) = 0$.
- The eigenvalues of A are the solutions of the characteristic equation or, equivalently, the roots of the characteristic polynomial.
- Altogether, A has n eigenvalues, but some may be complex numbers (even if the entries of A are real numbers), and some eigenvalues may be repeated.
- If A contains only real numbers, then its complex eigenvalues must occur in conjugate pairs i.e., if $\lambda \in \sigma(A)$, then $\overline{\lambda} \in \sigma(A)$.

1. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ denote a given operator defined by

$$f\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}3x+3y\\x+5y\end{pmatrix}.$$

Find eigenvectors and eigenvalues of f.

2. Let (a)
$$A = \begin{pmatrix} 3 & 3 \\ 1 & 5 \end{pmatrix}$$
; (b) $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.
Find characteristic polynomial of A , and

Find characteristic polynomial of A, and corresponding eigenspaces.

3. It is given a matrix
$$A = \begin{pmatrix} 7 & -4 & 0 \\ a & -7 & b \\ 3 & -2 & 0 \end{pmatrix}$$
 which

eigenvalues are -1 and 1. Find a parameters $a, b \in \mathbb{R}$ and find algebraic and geometrical multiplicities of all eigenvalues of A.

4. Find eigenvalues, eigenspaces and algebraic and geometrical multiplicities of all eigenvalues of A, if matrix A is given by

$$A = \begin{bmatrix} 3 & -4 & 0 & 2 \\ 4 & -5 & -2 & 4 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 2 & -1 \end{bmatrix}$$

 $\underbrace{\textbf{Multiplicities}}_{\text{we adopt the following definitions.}} \text{ For } \lambda \in \sigma(A) = \{\lambda_1, \lambda_2, ..., \lambda_s\},$

- The *algebraic multiplicity* of λ is the number of times it is repeated as a root of the characteristic polynomial. In other words, $\operatorname{alg mult}_A(\lambda_i) = a_i$ if and only if $(x-\lambda_1)^{a_1}...(x-\lambda_s)^{a_s} = 0$ is the characteristic equation for A.
- When alg mult_A(λ) = 1, λ is called a *simple* eigenvalue.
- The geometric multiplicity of λ is dimker $(A-\lambda I)$. In other words, geo mult_A (λ) is the maximal number of linearly independent eigenvectors associated with λ .
- Eigenvalues such that $\operatorname{alg\,mult}_A(\lambda) = \operatorname{geo\,mult}_A(\lambda)$ are called *semisimple eigenvalues* of A.

5. Let

$$A = \begin{pmatrix} 1 & a & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & b & 0 & 1 \end{pmatrix}$$

be a given matrix. Find parameters a and b if it is known that A is singular matrix which all eigenvalues have algebraic multiplicity 2.

6. Let *a* denote some real number. Find all eigenvalues and corresponding eigenspaces for a given matrix of *n*-th order

1 + a	1	1	 1	1]	
1	1+a	1	 1	1	
1	1	1 + a	 1	1	
÷	:	:	:	÷	•
1	1	1	 1 + a	1	
1	1	1	 1	1+a	

7. Diagonalize given matrices

(a)
$$A = \begin{pmatrix} 3 & 3 \\ 2 & 5 \end{pmatrix};$$
 (b) $A = \begin{pmatrix} 1 & -5 \\ 1 & -1 \end{pmatrix};$

(i.e. find invertible matrix P, with entries from \mathbb{R} , for which $P^{-1}AP = D$ hold, where D is diagonal matrix with entries from \mathbb{R}).

8. Find a real number λ such that $A = \begin{pmatrix} i & 1 \\ 2i & \lambda \end{pmatrix}$ has eigenvector $\begin{bmatrix} i \\ 1 \end{bmatrix}$. Is it possible to diagonalize A?

16 Generalized Eigenvectors and Nilpotnent Operators

Generalized Eigenvector Suppose $T \in \mathcal{L}(\mathcal{V})$ and λ is an eigenvalue of T. A vector $v \in \mathcal{V}$ is called a *generalized eigenvector* of T corresponding to λ if $v \neq 0$ and

$$(T - \lambda I)^j = 0$$

for some positive integer j.

Generalized Eigenspace, $G(\lambda, T)$ Suppose $T \in \mathcal{L}(\mathcal{V})$ and $\lambda \in \mathbb{F}$. The *generalized eigenspace* of T corresponding to λ , denoted $G(\lambda, T)$, is defined to be the set of all generalized eigenvectors of T corresponding to λ , along with the 0 vector.

Description of generalized eigenspaces Suppose $T \in \mathcal{L}(\mathcal{V})$ and $\lambda \in \mathbb{F}$. Then $G(\lambda, T) = \ker(T - \lambda I)^{\dim \mathcal{V}}$.

Linearly independent generalized

eigenvectors Let $T \in \mathcal{L}(\mathcal{V})$. Suppose λ_1 , $\overline{\lambda_2, ..., \lambda_m}$ are distinct eigenvalues of T and v_1, v_2 , ..., v_m are corresponding generalized eigenvectors. Then $\{v_1, v_2, ..., v_m\}$ is linearly independent set.

1. Define $T \in \mathcal{L}(\mathbb{C}^3)$

$$T(z_1, z_2, z_3) = (4z_2, 0, 5z_3).$$

- (a) Find all eigenvalues of T, the corresponding eigenspaces, and the corresponding generalized eigenspaces.
- (b) Show that \mathbb{C}^3 is the direct sum of generalized eigenspaces corresponding to the distinct eigenvalues of T.
- **2.** Define $T \in \mathcal{L}(\mathbb{C}^2)$ by

$$T(w, z) = (z, 0).$$

Find all generalized eigenvectors of T.

3. Define
$$T \in \mathcal{L}(\mathbb{C}^2)$$
 by

$$T(w,z) = (-z,w).$$

Find the generalized eigenspaces corresponding to the distinct eigenvalues of T.

 $\frac{\textbf{Nilpotent}}{\text{power of it equals } 0.}$ An operator is called *nilpotent* if some

 $\frac{\text{Nilpotent operator raised to dimension of}}{\underline{\text{domain is } 0}} \quad \text{Suppose } N \in \mathcal{L}(\mathcal{V}) \text{ is nilpotent.}}$ Then $N^{\dim \mathcal{V}} = 0.$ **Matrix of a nilpotent operator** Suppose N is a nilpotent operator on \mathcal{V} . Then there is a basis of \mathcal{V} with respect to which the matrix of N has the form

 $\begin{pmatrix} 0 & * & * & \dots & * & * \\ 0 & 0 & * & \dots & * & * \\ 0 & 0 & 0 & \dots & * & * \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & * \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$

here all entries on and below the diagonal are 0's.

4. Operator $T \in \mathcal{L}(\mathbb{R}^4)$ is defined on the following way

$$T(z_1, z_2, z_3, z_4) = (z_3, z_4, 0, 0)$$

- (a) Check is T nilpotent operator.
- (b) Find a basis \mathcal{B} of space \mathbb{R}^4 such that

$$[T]_{\mathcal{B}} = \begin{pmatrix} 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

(all entries on and below the diagonal are 0's).

5. Explain why the operator of differentiation on $\mathcal{P}_m(\mathbb{R})$ is nilpotent.

6. Suppose $T \in \mathcal{L}(\mathcal{V})$ is invertible. Prove that $G(\lambda, T) = G(\frac{1}{\lambda}, T^{-1})$ for every $\lambda \in \mathbb{F}$ with $\lambda \neq 0$.

7. Suppose $T \in \mathcal{L}(\mathcal{V})$ and $\alpha, \beta \in \mathbb{F}$ with $\alpha \neq \beta$. Prove that

$$G(\alpha, T) \cap G(\beta, T) = \{\mathbf{0}\}.$$

8. Suppose $T \in \mathcal{L}(\mathcal{V})$, *m* is a positive integer, and $\boldsymbol{v} \in \mathcal{V}$ is such that $T^{m-1}\boldsymbol{v} \neq 0$ but $T^m\boldsymbol{v} = 0$. Prove that

$$\boldsymbol{v}, T\boldsymbol{v}, T^2\boldsymbol{v}, ..., T^{m-1}\boldsymbol{v}$$

is linearly independent.

9. Suppose $N \in \mathcal{L}(\mathcal{V})$ is nilpotent. Prove that 0 is the only eigenvalue of N.

10. Prove or give a counterexample: The set of nilpotent operators on \mathcal{V} is a subspace of $\mathcal{L}(\mathcal{V})$.